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Abstract 
This paper investigates the effects of different definitions of 
the relevant population with regard to regional background in 
LR-based forensic voice comparison using cepstral 
coefficients (CCs). GMM-UBM calibrated log likelihood 
ratios (LLRs) are computed using training and reference data 
in three conditions: (a) Matched, (b) Mismatched and (c) 
Mixed. Results suggest that there is very little validity (EER 
and Cllr) variability across conditions, with MFCCs and 
LPCCs equally robust to different regionally-defined 
populations. However, considerable variability was found in 
the LLRs from individual comparisons indicating that CCs 
encode forensically significant regional variation, which is 
often overlooked in ASR research.  
Index Terms: regional variation, likelihood ratio, forensic 
voice comparison, relevant population 

1. Introduction 
Forensic voice comparison (FVC) typically involves the 
expert analysis of a recording of an unknown offender (e.g. 
threatening phone call) and a known suspect (e.g. police 
interview). Consistent with the 2009 National Research 
Council [1] report on strengthening forensic science and 
claims of a “paradigm shift” [2] across expert evidence, the 
likelihood ratio (LR) is increasingly accepted as the logically 
and legally correct framework for the evaluation of FVC 
evidence. The odds form of the LR is expressed as: 

 
p(E |Hp )
p(E |Hd )

, (1) 

where p is probability, E is evidence, Hp is the prosecution 
proposition (same speaker) and Hd is the defence proposition 
(different speakers). The LR involves an assessment of the 
similarity between the suspect and offender samples and the 
typicality of the offender sample with respect to the relevant 
population. 

A substantial issue for the application of the LR 
framework to FVC evidence is how the relevant population 
should be defined. In other forensic disciplines (e.g. DNA 
analysis), the relevant population is defined using logical 
relevance, referring to the grouping factors which affect the 
distribution of a variable in the population at large [3]. 
Applying this to FVC, Rose [4] claims that the default 
assumption should be that the relevant population consists of 
same-sex speakers of the same language as the offender (for 
alternatives see [5,6]). This approach has been used 
extensively in LR-based FVC research [7,8] and casework [9]. 
However, speech is an inherently complex form of forensic 

evidence with numerous sources of systematic between-
speaker variation. Further, in FVC there is a paradox: without 
knowing the identity of the offender, it is not possible to 
know, for certain, the population of which he is a member. A 
small number of studies have considered how the pragmatic 
decisions made by analysts in defining the relevant population 
(e.g. which factors to control and how narrowly to control 
them) affect LR output for linguistic-phonetic variables [e.g. 
10]. 

The same attention has not been given to the effects of 
different definitions of the relevant population on automatic 
speaker recognition (ASR) variables, such as CCs. The 
underlying structure of CCs predicts that they are not as 
susceptible to sources of systematic between-speaker variation 
as linguistic-phonetic variables [11], and therefore it may be 
possible to use a general database of speakers to represent the 
relevant population in ASR-based FVC. Consistent with this, 
commercially available CC-based ASR systems such as 
BATVOX are claimed to be “language and speech 
independent and thus deliver results irrespective of the 
language or accent used by the speaker” [12]. Similarly, a 
small-scale study into the effects of regional background by 
Moreno et al. [13] found only small equal error rate (EER) 
differences between matched and mismatched conditions 
using BATVOX, leading to the conclusion that “dialect 
influence is not a relevant variable for (A)SR systems … due 
to the fact that (A)SR uses low level acoustic characteristics 
not affected by differences in dialects.” Despite this, evidence 
from Harrison and French [14] indicates that CCs are sensitive 
to regional variation, potentially due to known differences in 
vocal settings (e.g. velarised setting in Liverpool English), 
which are expected to affect the ‘low level acoustic 
characteristics’ analysed in CC-based ASR. However, the 
extent to which such regional variation affects LR output was 
not tested in [14]. 

The present paper explores the LR-based sensitivity of mel 
frequency (MF) and linear prediction (LP) CCs to regional 
background. Calibrated GMM-UBM LLRs are computed for a 
set of sociolinguistically homogeneous test data using 
different definitions of the relevant population: (a) Matched – 
where the training and reference data match the test data 
narrowly for regional variety, (b) Mismatched – involving 
multiple regionally homogeneous sets of training and 
reference data which do not match the test data, and (c) Mixed 
– where the training and reference data consist of speakers of a 
range of different regional varieties. In each condition, 
therefore, Matched, Mismatched and Mixed data was used 
throughout the feature-to-score conversion and score-to-LR 
mapping stages. Output is considered in terms of validity 
(EER and Cllr) and imprecision across relevant population 
conditions is assessed using 95% Credible Intervals (CIs). 

 



2. Method 

2.1. Database 

Data were extracted from seven of the eight dialect regions 
(DRs) of the TIMIT Corpus of American English [15]. TIMIT 
was chosen primarily because it contains a large number of 
speakers (438 males; aged 21-65, mean = 31) from different 
regional backgrounds within a single country and language. 
This allows for large-scale tests with different regionally 
defined datasets without needing to calibrate LRs. TIMIT 
contains exclusively read speech in the form of 10 sentences 
per speaker recorded in a noise isolated sound booth. Samples 
were initially digitised at a sampling rate of 20 kHz and then 
downsampled to 16 kHz in post-production. 

TIMIT is limited for the purposes of evaluating the 
performance of speaker recognition systems. There is a 
relatively small amount of data available for each speaker. 
Further, the samples are of a high quality, recorded in a studio 
in a single session, which does not reflect typical casework 
conditions (low quality, transmission mismatched, non-
contemporaneous recordings of spontaneous speech). 
However, none of the available alternative databases fulfilled 
the essential requirements of a large number of speakers 
controlled for regional background within a single language. 
Therefore, despite the limitations of TIMIT, it does allow for 
the research questions in this study to be tested. 

DR3 (North Midland) was chosen to act as test data (mock 
suspect and offender samples), since this set contained the 
largest number of speakers (79). 25 test speakers were firstly 
identified at random to function as test data. From the 
remaining 54 DR3 speakers, 28 were identified at random to 
act as a set of Matched data. For each of the other six DRs 28 
speakers were extracted at random to form six Mismatched 
sets. Six speakers were then chosen at random from the 
Matched set and each of the Mismatched sets to create a 28-
speaker Mixed set. 

2.2. Linguistic variation 

A potential issue with the use of TIMIT for investigating 
regional variation is the extent to which the DRs represent 
linguistically distinct regional varieties. There is general 
agreement between the DR boundaries in TIMIT and those of 
the major urban dialect areas of North American English 
identified in [16], with differences primarily in the naming 
conventions for each region. 

Evidence of differences between the DRs from [16] also 
makes it possible to predict, on linguistic grounds, which 
Mismatched conditions should be most divergent from the 
training and test sets (DR3). The Western (DR7) set should 
display the greatest (linguistic) similarity with the Matched 
(DR3) set – the primary differences found in the tense long 
high and mid vowels and in the merger of the /əәʊ/ and /ɔː/ 
lexical sets in the West. There should also be linguistic 
similarity between DR3 and the DR4 (South Midland) and 
DR5 (Southern) sets as these three regions share laxing of 
long high and mid vowels. The most divergent results should 
be found for the Northern (DR2) set due to the Northern Cities 
Shift and for New York (DR6), due to /r/ vocalisation and /ɔː/ 
lowering. 

2.3. Feature extraction 

From the ten TIMIT sentences produced by each speaker, five 
were assigned to the suspect condition and the remaining five 

were assigned to the offender condition (ca. 15s/ sample). The 
speech-active portion of each sample for each speaker was 
extracted using Morrison’s [17] Sound File Cutter Upper 
software removing silences of greater than 100ms. MFCCs 
and LPCCs were extracted using HTK [18]. For each sample, 
a pre-emphasis filter (coefficient value 0.97) was applied to 
the signal. The signal was then divided into frames using a 
20ms Hamming window shifted at 10ms steps, resulting in 
50% overlap between adjacent frames. The power spectrum of 
each frame was processed by applying a mel (MFC) and linear 
(LPC) filter bank consisting of 26 filters across the frequency 
range. A discrete cosine transform was fitted to the log of the 
filter outputs and 12 MFCCs and 12 LPCCs extracted for LR 
computation. 

2.4. Experiments 

GMM-UBM [19] scores were initially computed for SS and 
DS pairs for each of the 28-speaker Matched, Mismatched and 
Mixed datasets, where the datasets function as both training 
and reference data. The reference data contained all of the 
available data for each speaker. GMMs of the reference data 
and each set of suspect data were constructed using 32 
Gaussians. This number of Gaussians was determined by the 
small amount of suspect data available and based on [20]. 
Scores for the training data were used to build a logistic 
regression calibration model [21] for each of the experimental 
conditions. 25 SS and 600 DS GMM-UBM scores were then 
computed for the test data using the Matched, Mismatched and 
Mixed sets as reference data. Finally, the calibration 
coefficients for each condition were applied to the test scores 
in order to convert them to calibrated LLRs. 

2.4.1. Validity 

For each sets of calibrated LLRs in each of the conditions, 
validity was assessed using both EER and log LR cost (Cllr) 
[21]. Validity was compared across conditions for each form 
of CC input and the overall range of validity variability 
compared across the different forms of cepstral input 

2.4.2. Reliability 

Non-parametric 95% CIs [22] were used to estimate the 
imprecision in the SS and DS LLRs produced for individual 
comparison across the three different relevant population 
conditions within for both MFC and LPC input. The mean 
95% CI were compared across MFCCs and LPCCs, to assess 
differences in sensitivity to regional variation between the 
different forms of input data. 

3. Results 

3.1. Validity 

Figure 1 displays Cllr and EER values for each of the regional 
dialect-based relevant population conditions based on MFCC 
input. EER values are spread over a very narrow range of 
0.5%, with optimum performance achieved by the 
Mismatched(6) (New York) system (0%) and the poorest 
performance achieved by the Mixed system. Relative to the 
performance of the Matched system (0.17%), using narrowly-
defined, appropriate data, EER is marginally poorer for the 
Mixed and Mismatched(1; New England), (2; Northern) and 
(4; South Midland) systems and marginally better for the 
Mismatched(6) and (7) (Western) systems.  The range of Cllr 
variability is also very narrow, with values spread maximally 



over a range of 0.03. The Matched and Mismatched(6) (New 
York) systems generate the best Cllr values (0.023) conditions. 
In the remaining Mismatched conditions Cllr is marginally 
poorer, although the absolute differences are very small. The 
poorest Cllr performance is recorded for the Mixed system 
(0.054). 

 

 
Figure 1. Log LR Cost (Cllr) plotted against EER (%) for each 

condition based on MFCC input 
 
Figure 2 displays validity metrics for the eight systems 

based on LPCC input. EER values are spread over a range of 
0.42%. Relative to the EER for the Matched system, EERs are 
both better and worse in the Mismatched and Mixed 
conditions. The best EER performance is achieved using 
Mismatched sets (5) (Southern) and (6) (0.083%), and the 
poorest performance is achieved using Mismatched sets (1) 
and (2) (0.5%). The Mixed system achieves the same EER as 
the Matched system (0.417%). A narrow range of variability is 
also displayed across systems in terms of Cllr. Values are 
spread over 0.039. Relative to the Matched system, Cllr is 
better for Mismatched sets (6) and (7), with (7) producing the 
best validity, and poorer in the other Mismatched and Mixed 
sets. 

 

 
Figure 2. Log LR Cost (Cllr) plotted against EER (%) for each 

conditions based on LPCC input 
 
Comparison of EER and Cllr values across the Matched, 

Mismatched and Mixed systems reveals potentially systematic 

patterns of variability. For both forms of input data the 
Mismatched sets (5), (6) and (7) are the best performing 
systems, consistently achieving the lowest EER and Cllr 
values. While there is variability in the ranking of the 
remaining sets, the Mismatched sets (1), (2) and (4) and the 
Mixed set consistently perform poorest. Using MFCCs, the 
Matched system clusters with the best performing systems, 
while using LPCCs it clusters with the poorest performing 
systems. However, the absolute differences between the 
systems in both Figure 1 and 2 are very small.  

3.2. Reliability 

Figure 3 displays the mean SS and DS LLRs (solid line) 
across all conditions with 95% CIs (dashed lines) for each 
form of cepstral input. There is almost complete overlap 
between the distribution of mean LLRs and 95% CIs based on 
MFCCs and LPCCs. This is reflected in the similarity of the 
mean 95% CI, which is only marginally wider using MFCCs 
(±1.88) than when using LPCCs (±1.80). 

 
Figure 3. Mean calibrated SS (light) and DS (dark) log10 LRs 
(solid) with 95% credible intervals (dashed) across relevant 
population conditions using MFCCs (red) and LPCCs (blue) 

 
Although the mean CIs are comparable across the different 

forms of input data, they do indicate a relatively large degree 
of imprecision in the LLRs for individual comparison pairs 
across the Matched, Mismatched and Mixed conditions. For 
example, based on MFCC input, one SS speaker comparison 
achieves a LLR of +7.43 using the Matched system. In the 
Mixed condition, the LLR for the same comparison is over 
two orders of magnitude stronger (+9.99) while using the 
Mismatched (1) data this value was stronger by three orders of 
magnitude. Figure 3 also suggests that the degree of 
imprecision across different regional-dialect system is similar 
for SS and DS comparisons, since the CIs for the SS and DS 
LLRs are roughly equal. Importantly the direction and 
magnitude of the variability for individual pairs is not 
consistent across different systems or forms of input data, 
indicating that different comparisons are affected by different 
definitions of the regionally defined relevant population in 
different ways. 
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4. Discussion 
Using both MFCC and LPCC input the range of validity 
variability (for EER and Cllr) across the Matched, Mismatched 
and Mixed systems is found to be extremely narrow. The 
patterning of the performance of the Mismatched and Mixed 
systems is also consistent across MFCC and LPCC input with 
Mismatched (5), (6) and (7) sets producing the lowest EER 
and Cllr values, and the Mismatched (1), (2) and (4) and the 
Mixed sets generating the poorest performance. However, 
there is little evidence of systematic validity differences 
between the Mismatched/ Mixed conditions and the Matched 
condition, predicted by the linguistic differences between the 
DRs (2.2). This suggests that for LR-based MFCC and LPCC 
systems, validity is relatively robust to the effects of different 
definitions of the relevant population with regard to regional 
background. 

However, the magnitude of the variability in individual 
LLRs across conditions (Figure 3) indicates that, in terms of 
strength of evidence, there is considerable sensitivity to the 
regional definition of the relevant population for MFCC and 
LPCC input. No systematic differences are found in the 
general magnitude of the imprecision for MFCC and LPCC 
input, or for SS and DS pairs. Rather, the use of regionally 
Matched, Mismatched and Mixed data affects individual 
comparisons in different ways and to different extents. 
However, due to the fact that MFCCs and LPCCs are 
extremely good speaker discriminants, generating strong LLRs 
for both SS and DS comparisons, the imprecision in the LLRs 
for individual speakers seemingly has very little impact on 
system validity. Since the data in this study was extracted 
from contemporaneous samples of read speech, which is 
expected to produce overly optimistic strength of evidence and 
system validity, more marked differences in validity across 
conditions may be revealed when using more forensically, 
non-contemporaneous data. 

5. Conclusions 
This paper has explored the effects of regional variation in the 
definition of the relevant population for LR-based FVC using 
MFCCs and LPCCs. Cllr and EER were found to be robust to 
regional variation. However, relatively large differences in the 
magnitude of SS and DS LLRs from individual comparisons 
across conditions were revealed. For both validity and 
reliability, the range of variation was almost exactly the same 
using MFCCs and LPCCs. This suggests that the choice of 
filterbank used to extract CCs does not markedly affect the 
system’s sensitivity to regional variation in the data using 
during feature-to-score conversion or score-to-LR mapping. 
However, these results do offer support for the findings in [14] 
and challenge the claims of language and regional variety 
independence of CCs and of CC-based ASR systems.  
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